Blasberg RG and Gelovani-Tjuvajev J (2002) In vivo molecular-genetic Imaging. J Cell Biochem 39, 172-183
Kang JH and Chung JK (2008) Molecular-genetic imaging based on reporter gene expression. J Nuc Med 49, 164S-179S
Kircher MF, Grambhir SS and Grimm J (2011) Noninvasive cell-tracking methods. Nat Rev Clin Oncol 8, 677-688
Youn H and Hong KJ (2012) In vivo noninvasive small animal molecular imaging. Osong Public Health Res Perspect 3, 48-59
Sabapathy V, Mentam J, Jacob PM and Kumar S (2015) Noninvasive optical imaging and in vivo cell tracking of indocyanine green labeled human stem cells transplanted at superficial or in-depth tissue of SCID mice. Stem Cell Int 2015, 606415
Peñuelas I, Mazzolini G, Boán JF et al (2005) Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterolog 128, 1787-1795
Rogeers WJ, Meyer CH and Kramer C (2006) Technology insight: in vivo cell tracking by use of MRI. Nat Clin Pract Cardiovasc Med 3, 554-562
Kwak YH, Hong SM and Park SS (2010) A single cell tracking system in real-time. Cell Immuno 265, 44-49
Carlson AL, Fujisaki J, Wu J et al (2013) Tracking single cells in live animals using a photoconvertible near-infrared cell membrane label. PLoS One 8, e69257
Jung KO, Kim TJ, Yu JH et al (2020) Whole-body tracking of single cells via positron emission tomography. Nat Biomed Eng 4, 835-844
Herschman HR (2004) Noninvasive imaging of reporter gene expression in living subjects. Adv Cancer Res 92, 29-80
Shaner NC, Steinbach PA and Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2, 905-909
Pan K, Deng H, Hu S et al (2020) Real-time surveillance of surgical margins via ICG-based near-infrared fluorescence imaging in patients with OSCC. World J Surg Oncol 18, 96
Chiu CH, Chao YK, Liu YH et al (2016) Clinical use of near-infrared fluorescence imaging with indocyanine green in thoracic surgery: a literature review. J Thorac Dis 8, S744-S748
Kosaka N, Ogawa M, Choyke PL and Kobayashi H (2009) Clinical implications of near-infrared fluorescence imaging in cancer. Future Oncol 5, 1501-1511
Hoffman RM (2015) Application of GFP imaging in cancer. Lab Invest 95, 432-452
Yang M, Baranov E, Jiang P et al (2000) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci U S A 97, 1206-1211
Bouvet M, Wang J, Nardin SR et al (2002) Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model. Cancer Res 62, 1534-1540
Suetsugu A, Osawa Y, Nagaki M et al (2010) Simultaneous color-coded imaging to distinguish cancer "stem-like" and non-stem cells in the same tumor. J Cell Biochem 111, 1035-1341
Suetsugu A, Jiang P, Moriwaki H, Saji S, Bouvet M and Hoffman RM (2013) Imaging nuclear - cytoplasm dynamics of cancer cells in the intravascular niche of live mice. Anticancer Res 33, 4229-4236
Yano S, Zhang Y, Zhao M et al (2014) Tumor-targeting Salmonella typhimurium A1-R decoys quiescent cancer cells to cycle as visualized by FUCCI imaging and become sensitive to chemotherapy. Cell Cycle 13, 3958-3963
Yano S, Miwa S, Mii S et al (2014) Invading cancer cells are predominantly in G0/G1 resulting in chemoresistance demonstrated by real-time FUCCI imaging. Cell Cycle 13, 953-960
Contag CH, Contag PR, Mullins JI, Spilman SD, Stevenson DK and Benaron DA (1995) Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 18, 593-603
Hwang MH, Li XJ, Kim JE et al (2015) Potential thera-peutic effect of natural killer cells on Doxorubicin-resistant breast cancer cells in vitro. PLoS One 10, e0136209
Hochgräfe K and Mandelkow EM (2013) Making the brain glow: in vivo bioluminescence imaging to study neurodegeneration. Mol Neurobiol 47, 868-882
Hochgräfe K, Ahmed T et al; Van der Jeugd A (2012) Cognitive defects are reversible in inducible mice expressing pro-aggregant full-length human Tau. Acta Neuropathol 123, 787-805
Reumers V, Deroose CM, Krylyshkina O et al (2008) Noninvasive and quantitative monitoring of adult neuronal stem cell migration in mouse brain using bioluminescence imaging. Stem Cells 26, 2382-2390
Prinz A, Diskar M and Herberg FW (2006) Application of bioluminescence resonance energy transfer (BRET) for bio-molecular interaction studies. ChemBioChem 7, 1007-1012
Kobayashi H, Picard LP, Schönegge AM and Bouvier M (2019) Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells. Nat Protoc 14, 1084-1107
Dale NC, Johnstone EK, White CW and Pfleger KD (2019) NanoBRET: the bright future of proximity-based assays. Front Bioeng Biotechnol 7, 56
England CG, Ehlerding EB and Cai W (2016) NanoLuc: a small luciferase is brightening up the field of bioluminescence. Bioconjug Chem 27, 1175-1187
El Khamlichi C, Reverchon-Assadi F, Hervouet-Coste N, Blot L, Reiter E and Morisset-Lopez S (2019) Bioluminescence resonance energy transfer as a method to study protein-protein interactions: application to G protein coupled receptor biology. Molecules 24, 537
Picard LP, Schönegge AM, Lohse MJ and Bouvier M (2018) Bioluminescence resonance energy transfer-based biosensors allow monitoring of ligand-and transducer-mediated GPCR conformational changes. Commun Biol 1, 106
Yang C, Tian R, Liu T and Liu G (2016) MRI reporter genes for noninvasive molecular imaging. Molecules 21, 580
Zhang R, Feng G, Zhang CJ, Cai X, Cheng X and Liu B (2016) Real-time specific light-up sensing of transferrin receptor (TfR): Image-guided photodynamic ablation of cancer cells through controlled cytomembrane disintegration. Anal Chem 88, 4841-4848
Qin C, Cheng K, Chen K et al (2013) Tyrosinase as a multifunctional reporter gene for Photoacoustic/MRI/PET triple modality molecular imaging. Sci Rep 3, 1-8
Gilad AA, Winnard PT Jr, van Zijl PC and Bulte JW (2007) Developing MR reporter genes: promises and pitfalls. NMR Biomed 20, 275-290
Vande Velde G, Rangarajan JR, Toelen J et al (2011) Evaluation of the specificity and sensitivity of ferritin as an MRI reporter gene in the mouse brain using lentiviral and adeno-associated viral vectors. Gene Ther 18, 594-605
Kim HS, Woo J, Lee JH et al (2015) In vivo tracking of dendritic cell using MRI reporter gene, Ferritin. PLoS One 10, e0125291
Gilad AA, McMahon MT, Walczak P et al (2007) Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 25, 217-219
Massoud TF and Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17, 545-580
Bull E, Madani SY, Sheth R, Seifalian A, Green M and Seifalian AM (2014) Stem cell tracking using iron oxide nanoparticles. Int J Nanomedicine 9, 1641
Fan K, Lu C, Shu G et al (2021) Sialic acid-engineered mesoporous polydopamine dual loaded with ferritin gene and SPIO for achieving endogenous and exogenous synergistic T2-weighted magnetic resonance imaging of HCC. J Nanobiotechnol 19, 1-17
Omami G, Tamimi D, Branstetter BF et al (2014) Basic principles and applications of 18F-FDG-PET/CT in oral and maxillofacial imaging: a pictorial essay. Imaging Sci Dent 44, 325-332
Keu VK, Witney TH, Yaghoubi S et al (2017) Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med 9, eaag2196
MacLaren DC, Gambhir SS, Satyamurthy N et al (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6, 785-791
Chung JK (2002) Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 43, 1188-1200
Rinne P, Hellberg S, Kiugel M et al (2016) Comparison of Somatostatin receptor 2-targeting PET tracers in the detection of mouse atherosclerotic plaques. Mol Imaging Biol 18, 99-108
Furukawa T, Lohith TG, Takamatsu S, Mori T, Tanaka T and Fujibayashi Y (2006) Potential of the FES-hERL PET reporter gene system-basic evaluation for gene therapy monitoring. Nucl Med Biol 33, 145-151
Altmann A, Kissel M, Zitzmann S et al (2003) Increased MIBG uptake after transfer of the human norepinephrine transporter gene in rat hepatoma. J Nucl Med 44, 973-980
Moroz MA, Serganova I, Zanzonico P et al (2007) Imaging hNET reporter gene expression with 124I-MIBG. J Nucl Med 48, 827-836
Berberat P, Friess H, Kashiwagi M, Beger HG and Büchler MW (1999) Diagnosis and staging of pancreatic cancer by positron emission tomography. World J Surg 23, 882-887
Stockhofe K, Postema JM and Schieferstein H; Ross TL. (2014) Radiolabeling of nanoparticles and polymers for PET imaging. Pharmaceuticals 7, 392-418
Neves AA, Xie B, Fawcett S et al (2017) Rapid imaging of tumor cell death in vivo using the C2A domain of Synaptotagmin-I. J Nucl Med 58, 881-887
Schier AF (2020) Single-cell biology: beyond the sum of its parts. Nat Methods 17, 17-20
Kichimaru T, Iwano S, Kiyama M et al (2016) A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging. Nat Commun 7, 1-8
Iwano S, Sugiyama M, Hama H et al (2018) Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 359, 935-939
Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE and Koretsky AP (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci U S A 101, 10901-10906
Shapiro EM, Sharer K, Skrtic S and Koretsky AP (2006) In vivo detection of single cells by MRI. Magn Reson Med 55, 242-249
Shapiro EM, Skrtic S and Koretsky AP (2005) Sizing it up: Cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53, 329-338
Heyn C, Ronald JA, Ramadan SS et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56, 1001-1010
Masedunskas A, Milberg O, Porat-Shliom N et al (2012) Intravital microscopy: a practical guide on imaging intracellular structures in live animals. Bioarchitecture 2, 143-157
Thurber GM, Yang KS, Reiner T et al (2013) Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat Commun 4, 1-10
Hoover EE and Squier JA (2013) Advances in multiphoton microscopy technology. Nat Photonics 7, 93-101
Morimoto A, Kikuta J and Ishii M (2020) Intravital multiphoton microscopy as a novel tool in the field of immunopharmacology. Pharmacol Ther 206, 107429
Liang Y and Walczak P (2021) Long term intravital single cell tracking under multiphoton microscopy. J Neurosci Methods 349, 109042
Lopez MJ, Seyed-Razavi Y, Yamaguchi T et al (2020) Multiphoton intravital microscopy of mandibular draining lymph nodes: a mouse model to study corneal immune responses. Front Immunol 11, 39
Carney B, Kossatz S and Reiner T (2017) Molecular Imaging of PARP. J Nucl Med 58, 1025-1030
Xu M and Wang LV (2006) Photoacoustic imaging in biomedicine. Rev Sci Instrum 77, 041101
Xia J, Yao J and Wang LV (2014) Photoacoustic tomo-graphy: principles and advances. Electromagnetic waves 147, 1-22
Wang L, Maslov K and Wang LV (2013) Single-cell label-ree photoacoustic flowoxigraphy in vivo. Proc Natl Acad Sci U S A 110, 5759-5764
Parker D, Broadbent C, Fowles P, Hawkesworth M and McNeil P (1993) Positron emission particle tracking - a technique for studying fow within engineering equipment. Nucl. Instrum. Methods Phys Res A 326, 592-607
Lee K, Kim TJ and Pratx G (2015) Single-cell tracking with PET using a novel trajectory reconstruction algorithm. IEEE Trans Med Imaging 34, 994-1003
Ouyang Y, Kim TJ and Pratx G (2016) Evaluation of a BGO-based PET system for single-cell tracking performance by simulation and phantom studies. Mol Imaging 15, 1-8