Mc CB (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A 36, 344-355
Kazazian HH Jr and Moran JV (2017) Mobile DNA in health and disease. N Engl J Med 377, 361-370
Richardson SR, Doucet AJ, Kopera HC, Moldovan JB, Garcia-Perez JL and Moran JV (2015) The Influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol Spectr 3, MDNA3-0061-2014
Cordaux R and Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10, 691-703
Hancks DC and Kazazian HH Jr (2016) Roles for retrotransposon insertions in human disease. Mob DNA 7, 9
Ostertag EM and Kazazian HH Jr (2001) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35, 501-538
Ewing AD and Kazazian HH Jr (2010) High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res 20, 1262-1270
Mager DL and Stoye JP (2015) Mammalian endogenous retroviruses. Microbiol Spectr 3, MDNA3-0009
Tarlinton RE, Meers J and Young PR (2006) Retroviral invasion of the koala genome. Nature 442, 79-81
Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409, 860-921
Clark JB and Kidwell MG (1997) A phylogenetic perspective on P transposable element evolution in Drosophila. Proc Natl Acad Sci U S A 94, 11428-11433
Khurana JS, Wang J, Xu J et al (2011) Adaptation to P element transposon invasion in Drosophila melanogaster. Cell 147, 1551-1563
Moon S, Cassani M, Lin YA, Wang L, Dou K and Zhang ZZ (2018) A robust transposon-endogenizing response from germline stem cells. Dev Cell 47, 660-671
Kofler R, Senti KA, Nolte V, Tobler R and Schlotterer C (2018) Molecular dissection of a natural transposable element invasion. Genome Res 28, 824-835
Kofler R, Hill T, Nolte V, Betancourt AJ and Schlotterer C (2015) The recent invasion of natural Drosophila simulans populations by the P-element. Proc Natl Acad Sci U S A 112, 6659-6663
Hill T, Schlotterer C and Betancourt AJ (2016) Hybrid dysgenesis in Drosophila simulans associated with a rapid invasion of the P-element. PLoS Genet 12, e1005920
Bellen HJ, Levis RW, He Y et al (2011) The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 188, 731-743
Spradling AC, Bellen HJ and Hoskins RA (2011) Drosophila P elements preferentially transpose to replication origins. Proc Natl Acad Sci U S A 108, 15948-15953
Eickbush TH and Eickbush DG (2015) Integration, regulation, and long-term stability of R2 retrotransposons. Microbiol Spectr 3, MDNA3-0011
Huang CR, Burns KH and Boeke JD (2012) Active transposition in genomes. Annu Rev Genet 46, 651-675
Sotero-Caio CG, Platt RN 2nd, Suh A and Ray DA (2017) Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol Evol 9, 161-177
Kissinger JC and DeBarry J (2011) Genome cartography: charting the apicomplexan genome. Trends Parasitol 27, 345-354
Van't Hof AE, Campagne P, Rigden DJ et al (2016) The industrial melanism mutation in British peppered moths is a transposable element. Nature 534, 102-105
Lisch D (2013) How important are transposons for plant evolution?. Nat Rev Genet 14, 49-61
Studer A, Zhao Q, Ross-Ibarra J and Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43, 1160-1163
Rebollo R, Farivar S and Mager DL (2012) C-GATE - catalogue of genes affected by transposable elements. Mob DNA 3, 9
de Souza FS, Franchini LF and Rubinstein M (2013) Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong?. Mol Biol Evol 30, 1239-1251
Sundaram V, Cheng Y, Ma Z et al (2014) Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res 24, 1963-1976
Notwell JH, Chung T, Heavner W and Bejerano G (2015) A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. Nat Commun 6, 6644
Lynch VJ, Leclerc RD, May G and Wagner GP (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43, 1154-1159
Kapitonov VV and Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3, e181
Huang S, Tao X, Yuan S et al (2016) Discovery of an active RAG transposon illuminates the origins of V(D)J recombination. Cell 166, 102-114
Traverse KL and Pardue ML (1988) A spontaneously opened ring chromosome of Drosophila melanogaster has acquired He-T DNA sequences at both new telomeres. Proc Natl Acad Sci U S A 85, 8116-8120
Levis RW, Ganesan R, Houtchens K, Tolar LA and Sheen FM (1993) Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75, 1083-1093
Abad JP, De Pablos B, Osoegawa K, De Jong PJ, Martin-Gallardo A and Villasante A (2004) TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres. Mol Biol Evol 21, 1620-1624
Villasante A, Abad JP, Planello R, Mendez-Lago M, Celniker SE and de Pablos B (2007) Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase. Genome Res 17, 1909-1918
Agudo M, Losada A, Abad JP, Pimpinelli S, Ripoll P and Villasante A (1999) Centromeres from telomeres? The centromeric region of the Y chromosome of Drosophila melanogaster contains a tandem array of telomeric HeT-A- and TART-related sequences. Nucleic Acids Res 27, 3318-3324
Chang CH, Chavan A, Palladino J et al (2019) Islands of retroelements are major components of Drosophila centromeres. PLoS Biol 17, e3000241
Neumann P, Navratilova A, Koblizkova A et al (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2, 4
Glockner G and Heidel AJ (2009) Centromere sequence and dynamics in Dictyostelium discoideum. Nucleic Acids Res 37, 1809-1816
Ferreri GC, Brown JD, Obergfell C et al (2011) Recent amplification of the kangaroo endogenous retrovirus, KERV, limited to the centromere. J Virol 85, 4761-4771
Rad R, Rad L, Wang W et al (2010) PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 330, 1104-1107
Dupuy AJ, Akagi K, Largaespada DA, Copeland NG and Jenkins NA (2005) Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436, 221-226
Lee E, Iskow R, Yang L et al (2012) Landscape of somatic retrotransposition in human cancers. Science 337, 967-971
Babaian A and Mager DL (2016) Endogenous retroviral promoter exaptation in human cancer. Mob DNA 7, 24
Shukla R, Upton KR, Munoz-Lopez M et al (2013) Endogenous retrotransposition activates oncogenic pathways in hepatocellular carcinoma. Cell 153, 101-111
Bailey JA, Liu G and Eichler EE (2003) An Alu transposition model for the origin and expansion of human segmental duplications. Am J Hum Genet 73, 823-834
Montgomery EA, Huang SM, Langley CH and Judd BH (1991) Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution. Genetics 129, 1085-1098
Deininger PL and Batzer MA (1999) Alu repeats and human disease. Mol Genet Metab 67, 183-193
Deniz O, Frost JM and Branco MR (2019) Regulation of transposable elements by DNA modifications. Nat Rev Genet 20, 417-431
Ozata DM, Gainetdinov I, Zoch A, O'Carroll D and Zamore PD (2019) PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 20, 89-108
Yang P, Wang Y and Macfarlan TS (2017) The role of KRAB-ZFPs in transposable element repression and mammalian evolution. Trends Genet 33, 871-881
Wang L, Dou K, Moon S, Tan FJ and Zhang ZZ (2018) Hijacking oogenesis enables massive propagation of LINE and retroviral transposons. Cell 174, 1082-1094
Nagirnaja L, Morup N, Nielsen JE et al (2021) Variant PNLDC1, defective piRNA processing, and azoospermia. N Engl J Med 385, 707-719
Houwing S, Kamminga LM, Berezikov E et al (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129, 69-82
Carmell MA, Girard A, van de Kant HJ et al (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12, 503-514
Bourc'his D and Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96-99
Siudeja K, van den Beek M, Riddiford N et al (2021) Unraveling the features of somatic transposition in the Drosophila intestine. EMBO J 40, e106388
Brouha B, Schustak J, Badge RM et al (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 100, 5280-5285
Beck CR, Collier P, Macfarlane C et al (2010) LINE-1 retrotransposition activity in human genomes. Cell 141, 1159-1170
Hancks DC, Goodier JL, Mandal PK, Cheung LE and Kazazian HH Jr (2011) Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet 20, 3386-3400
Raiz J, Damert A, Chira S et al (2012) The non-autonomous retrotransposon SVA is transmobilized by the human LINE-1 protein machinery. Nucleic Acids Res 40, 1666-1683
Boeke JD, Garfinkel DJ, Styles CA and Fink GR (1985) Ty elements transpose through an RNA intermediate. Cell 40, 491-500
Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD and Kazazian HH Jr (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87, 917-927
Ostertag EM, Prak ET, DeBerardinis RJ, Moran JV and Kazazian HH Jr (2000) Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res 28, 1418-1423
Xie Y, Rosser JM, Thompson TL, Boeke JD and An W (2011) Characterization of L1 retrotransposition with high-throughput dual-luciferase assays. Nucleic Acids Res 39, e16
Kannan M, Li J, Fritz SE et al (2017) Dynamic silencing of somatic L1 retrotransposon insertions reflects the developmental and cellular contexts of their genomic integration. Mob DNA 8, 8
Kopera HC, Larson PA, Moldovan JB, Richardson SR, Liu Y and Moran JV (2016) LINE-1 cultured cell retro-transposition assay. Methods Mol Biol 1400, 139-156
Wei W, Morrish TA, Alisch RS and Moran JV (2000) A transient assay reveals that cultured human cells can accommodate multiple LINE-1 retrotransposition events. Anal Biochem 284, 435-438
Morrish TA, Gilbert N, Myers JS et al (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31, 159-165
Feng Q, Moran JV, Kazazian HH Jr and Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905-916
An W, Han JS, Wheelan SJ et al (2006) Active retrotransposition by a synthetic L1 element in mice. Proc Natl Acad Sci U S A 103, 18662-18667
Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV and Gage FH (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435, 903-910
Newkirk SJ, Lee S, Grandi FC et al (2017) Intact piRNA pathway prevents L1 mobilization in male meiosis. Proc Natl Acad Sci U S A 114, E5635-E5644
Jensen S and Heidmann T (1991) An indicator gene for detection of germline retrotransposition in transgenic Drosophila demonstrates RNA-mediated transposition of the LINE I element. EMBO J 10, 1927-1937
Sultana T, van Essen D, Siol O et al (2019) The landscape of L1 retrotransposons in the human genome is shaped by preinsertion sequence biases and post-insertion selection. Mol Cell 74, 555-570
Flasch DA, Macia A, Sanchez L et al (2019) Genome-wide de novo L1 retrotransposition connects endonuclease activity with replication. Cell 177, 837-851
Marlor RL, Parkhurst SM and Corces VG (1986) The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. Mol Cell Biol 6, 1129-1134
Kim A, Terzian C, Santamaria P, Pelisson A, Purd'homme N and Bucheton A (1994) Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc Natl Acad Sci U S A 91, 1285-1289
Song SU, Gerasimova T, Kurkulos M, Boeke JD and Corces VG (1994) An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes Dev 8, 2046-2057
Mevel-Ninio M, Mariol MC and Gans M (1989) Mobilization of the gypsy and copia retrotransposons in Drosophila melanogaster induces reversion of the ovo dominant female-sterile mutations: molecular analysis of revertant alleles. EMBO J 8, 1549-1558
Dej KJ, Gerasimova T, Corces VG and Boeke JD (1998) A hotspot for the Drosophila gypsy retroelement in the ovo locus. Nucleic Acids Res 26, 4019-4025
Labrador M, Sha K, Li A and Corces VG (2008) Insulator and Ovo proteins determine the frequency and specificity of insertion of the gypsy retrotransposon in Drosophila melanogaster. Genetics 180, 1367-1378
Li W, Prazak L, Chatterjee N et al (2013) Activation of transposable elements during aging and neuronal decline in Drosophila. Nat Neurosci 16, 529-531
Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34, 1-15
Jones BC, Wood JG, Chang C et al (2016) A somatic piRNA pathway in the Drosophila fat body ensures metabolic homeostasis and normal lifespan. Nat Commun 7, 13856
Wood JG, Jones BC, Jiang N et al (2016) Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila. Proc Natl Acad Sci U S A 113, 11277-11282
Sousa-Victor P, Ayyaz A, Hayashi R et al (2017) Piwi is required to limit exhaustion of aging somatic stem cells. Cell Rep 20, 2527-2537
Sun W, Samimi H, Gamez M, Zare H and Frost B (2018) Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat Neurosci 21, 1038-1048
Fort-Aznar L, Ugbode C and Sweeney ST (2020) Retrovirus reactivation in CHMP2BIntron5 models of frontotemporal dementia. Hum Mol Genet 29, 2637-2646
Penke TJ, McKay DJ, Strahl BD, Matera AG and Duronio RJ (2016) Direct interrogation of the role of H3K9 in metazoan heterochromatin function. Genes Dev 30, 1866-1880
Chang YH, Keegan RM, Prazak L and Dubnau J (2019) Cellular labeling of endogenous retrovirus replication (CLEVR) reveals de novo insertions of the gypsy retrotransposable element in cell culture and in both neurons and glial cells of aging fruit flies. PLoS Biol 17, e3000278
Keegan RM, Talbot LR, Chang YH, Metzger MJ and Dubnau J (2021) Intercellular viral spread and intracellular transposition of Drosophila gypsy. PLoS Genet 17, e1009535
Song SU, Kurkulos M, Boeke JD and Corces VG (1997) Infection of the germ line by retroviral particles produced in the follicle cells: a possible mechanism for the mobilization of the gypsy retroelement of Drosophila. Development 124, 2789-2798
Chang YH and Dubnau J (2019) The gypsy endogenous retrovirus drives non-cell-autonomous propagation in a Drosophila TDP-43 model of neurodegeneration. Curr Biol 29, 3135-3152
Wensink PC, Tabata S and Pachl C (1979) The clustered and scrambled arrangement of moderately repetitive elements in Drosophila DNA. Cell 18, 1231-1246
Potter S, Truett M, Phillips M and Maher A (1980) Eucaryotic transposable genetic elements with inverted terminal repeats. Cell 20, 639-647
Biemont C, Ronsseray S, Anxolabehere D, Izaabel H and Gautier C (1990) Localization of P elements, copy number regulation, and cytotype determination in Drosophila melanogaster. Genet Res 56, 3-14
Badge RM, Alisch RS and Moran JV (2003) ATLAS: a system to selectively identify human-specific L1 insertions. Am J Hum Genet 72, 823-838
Sheen FM, Sherry ST, Risch GM et al (2000) Reading between the LINEs: human genomic variation induced by LINE-1 retrotransposition. Genome Res 10, 1496-1508
Pornthanakasem W and Mutirangura A (2004) LINE-1 insertion dimorphisms identification by PCR. Biotechniques 37, 750, 752
Kim EY, Fan W and Cho J (2021) Determination of TE insertion positions using transposon display. Methods Mol Biol 2250, 115-121
Goerner-Potvin P and Bourque G (2018) Computational tools to unmask transposable elements. Nat Rev Genet 19, 688-704
Tubio JMC, Li Y, Ju YS et al (2014) Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 345, 1251343
Treiber CD and Waddell S (2017) Resolving the prevalence of somatic transposition in Drosophila. Elife 6, e28297
Kim J, Hu C, Moufawad El Achkar C et al (2019) Patient- customized oligonucleotide therapy for a rare genetic disease. N Engl J Med 381, 1644-1652
van Dijk EL, Jaszczyszyn Y, Naquin D and Thermes C (2018) The third revolution in sequencing technology. Trends Genet 34, 666-681
Wang Y, Zhao Y, Bollas A, Wang Y and Au KF (2021) Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol 39, 1348-1365
Logsdon GA, Vollger MR and Eichler EE (2020) Long-read human genome sequencing and its applications. Nat Rev Genet 21, 597-614
Kasianowicz JJ, Brandin E, Branton D and Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93, 13770-13773
Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H and Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274, 1859-1866
Jain M, Olsen HE, Paten B and Akeson M (2016) The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 17, 239
Manrao EA, Derrington IM, Laszlo AH et al (2012) Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat Biotechnol 30, 349-353
Cherf GM, Lieberman KR, Rashid H, Lam CE, Karplus K and Akeson M (2012) Automated forward and reverse ratcheting of DNA in a nanopore at 5-A precision. Nat Biotechnol 30, 344-348
Amarasinghe SL, Ritchie ME and Gouil Q (2021) long-read-tools.org: an interactive catalogue of analysis methods for long-read sequencing data. Gigascience 10, giab003
Gong L, Wong CH, Cheng WC et al (2018) Picky comprehensively detects high-resolution structural variants in nanopore long reads. Nat Methods 15, 455-460
Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC and McCombie WR (2015) Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res 25, 1750-1756
David M, Dursi LJ, Yao D, Boutros PC and Simpson JT (2017) Nanocall: an open source basecaller for Oxford Nanopore sequencing data. Bioinformatics 33, 49-55
Boza V, Brejova B and Vinar T (2017) DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PLoS One 12, e0178751
Gong L, Wong CH, Idol J, Ngan CY and Wei CL (2019) Ultra-long read sequencing for whole genomic DNA analysis. J Vis Exp 145, e58954
Branton D and Deamer DW (2018) Nanopore sequencing: an introduction. World Scientific, New Jersey
De Coster W, De Rijk P, De Roeck A et al (2019) Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome. Genome Res 29, 1178-1187
De Roeck A, De Coster W, Bossaerts L et al (2019) NanoSatellite: accurate characterization of expanded tandem repeat length and sequence through whole genome long-read sequencing on PromethION. Genome Biol 20, 239
Kim HS, Jeon S, Kim C et al (2019) Chromosome-scale assembly comparison of the Korean Reference Genome KOREF from PromethION and PacBio with Hi-C mapping information. Gigascience 8, giz125
Nicholls SM, Quick JC, Tang S and Loman NJ (2019) Ultra-deep, long-read nanopore sequencing of mock microbial community standards. Gigascience 8, giz043
Payne A, Holmes N, Rakyan V and Loose M (2019) BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files. Bioinformatics 35, 2193-2198
Jain M, Koren S, Miga KH et al (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36, 338-345
Solares EA, Chakraborty M, Miller DE et al (2018) Rapid low-cost assembly of the Drosophila melanogaster reference genome using low-coverage, long-read sequencing. G3 (Bethesda) 8, 3143-3154
Tyson JR, O'Neil NJ, Jain M, Olsen HE, Hieter P and Snutch TP (2018) MinION-based long-read sequencing and assembly extends the Caenorhabditis elegans reference genome. Genome Res 28, 266-274
Jain M, Olsen HE, Turner DJ et al (2018) Linear assembly of a human centromere on the Y chromosome. Nat Biotechnol 36, 321-323
Miga KH, Koren S, Rhie A et al (2020) Telomere-to-telomere assembly of a complete human X chromosome. Nature 585, 79-84
Michael TP, Jupe F, Bemm F et al (2018) High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat Commun 9, 541
Chernyavskaya Y, Zhang X, Liu J and Blackburn J (2022) Long-read sequencing of the zebrafish genome reorganizes genomic architecture. BMC Genomics 23, 116
Garg S, Fungtammasan A, Carroll A et al (2021) Chromosome-scale, haplotype-resolved assembly of human genomes. Nat Biotechnol 39, 309-312
Kirov I, Merkulov P, Dudnikov M et al (2021) Transposons hidden in Arabidopsis thaliana genome assembly gaps and mobilization of non-autonomous LTR retrotransposons unravelled by nanotei pipeline. Plants (Basel) 10, 2681
Mohamed M, Dang NT, Ogyama Y et al (2020) A transposon story: from TE content to TE dynamic invasion of Drosophila genomes using the single-molecule sequencing technology from Oxford Nanopore. Cells 9, 1776
Miller DE, Staber C, Zeitlinger J and Hawley RS (2018) Highly contiguous genome assemblies of 15 Drosophila species generated using Nanopore sequencing. G (Bethesda) 8 3, 3131-3141
Pradhan B, Cajuso T, Katainen R et al (2017) Detection of subclonal L1 transductions in colorectal cancer by long-distance inverse-PCR and Nanopore sequencing. Sci Rep 7, 14521
Fujimoto A, Wong JH, Yoshii Y et al (2021) Whole-genome sequencing with long reads reveals complex structure and origin of structural variation in human genetic variations and somatic mutations in cancer. Genome Med 13, 65
Ellison CE and Cao W (2020) Nanopore sequencing and Hi-C scaffolding provide insight into the evolutionary dynamics of transposable elements and piRNA production in wild strains of Drosophila melanogaster. Nucleic Acids Res 48, 290-303
Siudeja K, van den Beek M, Riddiford N et al (2021) Unraveling the features of somatic transposition in the Drosophila intestine. EMBO J 40, e106388
Frommer M, McDonald LE, Millar DS et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89, 1827-1831
Ewing AD, Smits N, Sanchez-Luque FJ et al (2020) Nanopore sequencing enables comprehensive transposable element epigenomic profiling. Mol Cell 80, 915-928
Haggerty C, Kretzmer H, Riemenschneider C et al (2021) Dnmt1 has de novo activity targeted to transposable elements. Nat Struct Mol Biol 28, 594-603
Jiang F, Zhang J, Liu Q et al (2019) Long-read direct RNA sequencing by 5'-Cap capturing reveals the impact of Piwi on the widespread exonization of transposable elements in locusts. RNA Biol 16, 950-959
Kirov I, Dudnikov M, Merkulov P et al (2020) Nanopore RNA sequencing revealed long non-coding and LTR retrotransposon-related RNAs expressed at early stages of triticale SEED development. Plants (Basel) 9, 1794
Lee SC, Ernst E, Berube B et al (2020) Arabidopsis retrotransposon virus-like particles and their regulation by epigenetically activated small RNA. Genome Res 30, 576-588
Panda K and Slotkin RK (2020) Long-read cDNA sequencing enables a "gene-like" transcript annotation of transposable elements. Plant Cell 32, 2687-2698
Berrens RV, Yang A, Laumer CE et al (2021) Locus-specific expression of transposable elements in single cells with CELLO-seq. Nat Biotechnol 40, 546-554
Maringer K, Yousuf A, Heesom KJ et al (2017) Proteomics informed by transcriptomics for characterising active transposable elements and genome annotation in Aedes aegypti. BMC Genomics 18, 101