Smith RA, Hartley RC, Cocheme HM and Murphy MP (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33, 341-352
Yoo SM and Jung YK (2018) A Molecular Approach to Mitophagy and Mitochondrial Dynamics. Mol Cells 41, 18-26
Suomalainen A and Battersby BJ (2018) Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol 19, 77-92
Leyns CEG, Ulrich JD, Finn MB et al (2017) TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci U S A 114, 11524-11529
Corder EH, Saunders AM, Strittmatter WJ et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261, 921-923
Robert J, Button EB, Yuen B et al (2017) Clearance of beta-amyloid is facilitated by apolipoprotein E and circulating high-density lipoproteins in bioengineered human vessels. Elife 6, e29595.
Tai LM, Ghura S, Koster KP et al (2015) APOE-modulated Abeta-induced neuroinflammation in Alzheimer's disease: current landscape, novel data, and future perspective. J Neurochem 133, 465-488
Zhang B, Gaiteri C, Bodea LG et al (2013) Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer’s Disease. Cell 153, 707-720
Griffin WS, Stanley LC, Ling C et al (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 86, 7611-7615
Eikelenboom P and Stam FC (1982) Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study. Acta Neuropathol 57, 239-242
Eriksen JL, Sagi SA, Smith TE et al (2003) NSAIDs and enantiomers of flurbiprofen target -secretase and lower A42 in vivo. J Clin Invest 112, 440-449
Yan Q, Zhang J, Liu H et al (2003) Anti-Inflammatory Drug Therapy Alters -Amyloid Processing and Deposition in an Animal Model of Alzheimer's Disease. J Neurosci 23, 7504-7509
Zandi PP, Anthony JC, Hayden KM, Mehta K, Mayer L and Breitner JCS (2002) Reduced incidence of AD with NSAID but not not H2 receptor antagonists: the Cache County Study. Neurology 59, 880-886
Breitner JC, Welsh KA, Helms MJ et al (1995) Delayed onset of Alzheimer's disease with nonsteroidal antiinflammatory and histamine H2 blocking drugs. Neurobiol Aging 16, 523-530
Wyss-Coray T, Lin C, Yan F et al (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7, 612-618
Wyss-Coray T, Yan F, Lin AHT et al (2002) Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice. Proc Natl Acad Sci U S A 99, 10837-10842
Liu CC, Hu J, Zhao N et al (2017) Astrocytic LRP1 Mediates Brain Abeta Clearance and Impacts Amyloid Deposition. J Neurosci 37, 4023-4031
Kanekiyo T, Cirrito JR, Liu CC et al (2013) Neuronal clearance of amyloid-beta by endocytic receptor LRP1. J Neurosci 33, 19276-19283
Fu Y, Hsiao JH, Paxinos G, Halliday GM and Kim WS (2016) ABCA7 Mediates Phagocytic Clearance of Amyloid-beta in the Brain. J Alzheimers Dis 54, 569-584
Chakrabarty P, Li A, Ceballos-Diaz C et al (2015) IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 85, 519-533
Grilli M, Ribola M, Alberici A, Valerio A, Memo M and Spano P (1995) Identification and characterization of a kappa B/Rel binding site in the regulatory region of the amyloid precursor protein gene. J Biol Chem 270, 26774-26777
Cho HJ, Kim SK, Jin SM et al (2007) IFN-gamma-induced BACE1 expression is mediated by activation of JAK2 and ERK1/2 signaling pathways and direct binding of STAT1 to BACE1 promoter in astrocytes. Glia 55, 253-262
Sy M, Kitazawa M, Medeiros R et al (2011) Inflammation induced by infection potentiates tau pathological features in transgenic mice. Am J Pathol 178, 2811-2822
Billups B and Forsythe ID (2002) Presynaptic Mitochondrial Calcium Sequestration Influences Transmission at Mammalian Central Synapses. J Neurosci 22, 5840-5847
Zhou B, Yu P, Lin M-Y, Sun T, Chen Y and Sheng ZH (2016) Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J Cell Biol 214, 103-119
Tang FL, Liu W, Hu JX et al (2015) VPS35 Deficiency or Mutation Causes Dopaminergic Neuronal Loss by Impairing Mitochondrial Fusion and Function. Cell Rep 12, 1631-1643
Johnson AB and Blum NR (1970) Nucleoside phosphatase activities associated with the tangles and plaques of alzheimer's disease: a histochemical study of natural and experimental neurofibrillary tangles. J Neuropathol Exp Neurol 29, 463-478
Zhang L, Trushin S, Christensen TA et al (2016) Altered brain energetics induces mitochondrial fission arrest in Alzheimer’s Disease. Sci Rep 6, 18725
Gibson GE, Sheu KF, Blass JP et al (1988) Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer's disease. Arch Neurol 45, 836-840
Sorbi S, Bird ED and Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13, 72-78
Mutisya EM, Bowling AC and Beal MF (1994) Cortical Cytochrome Oxidase Activity Is Reduced in Alzheimer's Disease. J Neurochem 63, 2179-2184
Mecocci P, MacGarvey U and Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Ann Neurol 36, 747-751
Reddy PH, Yin X, Manczak M et al (2018) Mutant APP and amyloid beta-induced defective autophagy, mitophagy, mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease. Hum Mol Genet 27, 2502-2516
Devi L, Prabhu BM, Galati DF, Avadhani NG and Anandatheerthavarada HK (2006) Accumulation of Amyloid Precursor Protein in the Mitochondrial Import Channels of Human Alzheimer’s Disease Brain Is Associated with Mitochondrial Dysfunction. J Neurosci 26, 9057-9068
Lustbader JW, Cirilli M, Lin C et al (2004) ABAD Directly Links A to Mitochondrial Toxicity in Alzheimer's Disease. Science 304, 448-452
Manczak M and Reddy PH (2012) Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer's disease. Hum Mol Genet 21, 5131-5146
Park J, Choi H, Min JS et al (2015) Loss of mitofusin 2 links beta-amyloid-mediated mitochondrial fragmentation and Cdk5-induced oxidative stress in neuron cells. J Neurochem 132, 687-702
Kim DI, Lee KH, Gabr AA et al (2016) A-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. Biochim Biophys Acta 1863, 2820-2834
Fukui H, Diaz F, Garcia S and Moraes CT (2007) Cytochrome c oxidase deficiency in neurons decreases both oxidative stress and amyloid formation in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 104, 14163-14168
Krishnan KJ, Ratnaike TE, De Gruyter HLM, Jaros E and Turnbull DM (2012) Mitochondrial DNA deletions cause the biochemical defect observed in Alzheimer's disease. Neurobiol Aging 33, 2210-2214
Hoekstra JG, Hipp MJ, Montine TJ and Kennedy SR (2016) Mitochondrial DNA mutations increase in early stage Alzheimer disease and are inconsistent with oxidative damage. Ann Neurol 80, 301-306
Coskun PE, Beal MF and Wallace DC (2004) Alzheimer's brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A 101, 10726-10731
Höglinger GU, Lannuzel A, Khondiker ME et al (2005) The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem 95, 930-939
Lopez-Otin C, Blasco MA, Partridge L, Serrano M and Kroemer G (2013) The hallmarks of aging. Cell 153, 1194-1217
Scheibye-Knudsen M, Fang EF, Croteau DL, Wilson DM and Bohr VA (2015) Protecting the mitochondrial powerhouse. Trends Cell Biol 25, 158-170
Hammerling BC and Gustafsson AB (2014) Mitochondrial quality control in the myocardium: Cooperation between protein degradation and mitophagy. J Mol Cell Cardiol 75, 122-130
Cenini G and Voos W (2016) Role of Mitochondrial Protein Quality Control in Oxidative Stress-induced Neurodegenerative Diseases. Curr Alzheimer Res 13, 164-173
Bragoszewski P, Turek M and Chacinska A (2017) Control of mitochondrial biogenesis and function by the ubiquitin - proteasome system. Open Biol 7, 17007
Suliman HB and Piantadosi CA (2016) Mitochondrial Quality Control as a Therapeutic Target. Pharmacol Rev 68, 20-48
Meyer A, Laverny G, Bernardi L et al (2018) Mitochondria: An Organelle of Bacterial Origin Controlling Inflammation. Front Immunol 9, 536
Archibald JM (2015) Endosymbiosis and Eukaryotic Cell Evolution. Curr Biol 25, R911-921
Barbalat R, Ewald SE, Mouchess ML and Barton GM (2011) Nucleic acid recognition by the innate immune system. Annu Rev Immunol 29, 185-214
Contis A, Mitrovic S, Lavie J et al (2017) Neutrophil-derived mitochondrial DNA promotes receptor activator of nuclear factor kappaB and its ligand signalling in rheumatoid arthritis. Rheumatology 56, 1200-1205
Shimada K, Crother TR, Karlin J et al (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401-414
Bai J and Liu F (2019) The cGAS-cGAMP-STING Pathway: A Molecular Link Between Immunity and Metabolism. Diabetes 68, 1099-1108
Dorward DA, Lucas CD, Chapman GB, Haslett C, Dhaliwal K and Rossi AG (2015) The role of formylated peptides and formyl peptide receptor 1 in governing neutrophil function during acute inflammation. Am J Pathol 185, 1172-1184
Dahlgren C, Gabl M, Holdfeldt A, Winther M and Forsman H (2016) Basic characteristics of the neutrophil receptors that recognize formylated peptides, a dangerassociated molecular pattern generated by bacteria and mitochondria. Biochem Pharmacol 114, 22-39
Raoof M, Zhang Q, Itagaki K and Hauser CJ (2010) Mitochondrial peptides are potent immune activators that activate human neutrophils via FPR-1. J Trauma 68, 1328-1332; discussion 1332-1324
Pan ZK, Chen LY, Cochrane CG and Zuraw BL (2000) fMet-Leu-Phe stimulates proinflammatory cytokine gene expression in human peripheral blood monocytes: the role of phosphatidylinositol 3-kinase. J Immunol 164, 404-411
Banoth B and Cassel SL (2018) Mitochondria in innate immune signaling. Transl Res 202, 52-68
Iyer SS, He Q, Janczy JR et al (2013) Mitochondrial Cardiolipin Is Required for Nlrp3 Inflammasome Activation. Immunity 39, 311-323
Chu CT, Bayir H and Kagan VE (2014) LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons Implications for Parkinson disease. Autophagy 10, 376-378
Allard B, Longhi MS, Robson SC and Stagg J (2017) The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev 276, 121-144
Amores-Iniesta J, Barbera-Cremades M, Martinez CM et al (2017) Extracellular ATP Activates the NLRP3 Inflammasome and Is an Early Danger Signal of Skin Allograft Rejection. Cell Rep 21, 3414-3426
Cauwels A, Rogge E, Vandendriessche B, Shiva S and Brouckaert P (2014) Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell Death Dis 5, e1102-e1102
Eleftheriadis T, Pissas G, Liakopoulos V and Stefanidis I (2016) Cytochrome c as a Potentially Clinical Useful Marker of Mitochondrial and Cellular Damage. Front Immunol 7, 279
Lin ML, Zhan Y, Projetto AI et al (2008) Selective suicide of cross-presenting CD8(+) dendritic cells by cytochrome c injection shows functional heterogeneity within this subset. Proc Natl Acad Sci U S A 105, 3029-3034
Codina R, Vanasse A, Kelekar A, Vezys V and Jemmerson R (2010) Cytochrome c-induced lymphocyte death from the outside in: inhibition by serum leucine-rich alpha-2-glycoprotein-1. Apoptosis 15, 139-152
Pullerits R, Bokarewa M, Jonsson IM, Verdrengh M and Tarkowski A (2005) Extracellular cytochrome c, a mitochondrial apoptosis-related protein, induces arthritis. Rheumatology 44, 32-39
Mittal M, Siddiqui MR, Tran K, Reddy SP and Malik AB (2014) Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid Redox Sign 20, 1126-1167
Kozlov AV, Lancaster JR, Meszaros AT and Weidinger A (2017) Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol 13, 170-181
Naik E and Dixit VM (2011) Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 208, 417-420
Nakahira K, Haspel JA, Rathinam VAK et al (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12, 222-230
West AP, Khoury-Hanold W, Staron M et al (2015) Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553-557
Tian J, Avalos AM, Mao SY et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8, 487-496
Julian MW, Shao GH, Bao SY et al (2012) Mitochondrial Transcription Factor A Serves as a Danger Signal by Augmenting Plasmacytoid Dendritic Cell Responses to DNA. J Immunol 189, 433-443
Jacobs JL and Coyne CB (2013) Mechanisms of MAVS Regulation at the Mitochondrial Membrane. J Mol Biol 425, 5009-5019
Seth RB, Sun LJ, Ea CK and Chen ZJJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappa B and IRF3. Cell 122, 669-682
Subramanian N, Natarajan K, Clatworthy MR, Wang Z and Germain RN (2013) The Adaptor MAVS Promotes NLRP3 Mitochondrial Localization and Inflammasome Activation. Cell 153, 348-361
Castanier C, Garcin D, Vazquez A and Arnoult D (2010) Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep 11, 133-138
Yasukawa K, Oshiumi H, Takeda M et al (2009) Mitofusin 2 Inhibits Mitochondrial Antiviral Signaling. Sci Signal 2, ra47
Tang ED and Wang CY (2009) MAVS Self-Association Mediates Antiviral Innate Immune Signaling. J Virol 83, 3420-3428
Vogel RO, Janssen RJRJ, van den Brand MAM et al (2007) Cytosolic signaling protein Ecsit also localizes to mitochondria where it interacts with chaperone NDUFAF1 and functions in complex I assembly. Gene Dev 21, 615-624
Geng J, Sun XF, Wang P et al (2015) Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol 16, 1142-1152
Carneiro FRG, Lepelley A, Seeley JJ, Hayden MS and Ghosh S (2018) An Essential Role for ECSIT in Mitochondrial Complex I Assembly and Mitophagy in Macrophages. Cell Rep 22, 2654-2666
Shi HX, Liu X, Wang Q et al (2011) Mitochondrial Ubiquitin Ligase MARCH5 Promotes TLR7 Signaling by Attenuating TANK Action. PLoS Pathog 7, e1002057
Wilkins HM, Carl SM, Greenlief ACS, Festoff BW and Swerdlow RH (2014) Bioenergetic Dysfunction and Inflammation in Alzheimer’s Disease: A Possible Connection. Front Aging Neurosci 6, 311
Wilkins HM, Weidling IW, Ji Y and Swerdlow RH (2017) Mitochondria-Derived Damage-Associated Molecular Patterns in Neurodegeneration. Front Immunol 8, 508
Bajwa E, Pointer CB and Klegeris A (2019) The Role of Mitochondrial Damage-Associated Molecular Patterns in Chronic Neuroinflammation. Mediators Inflammation 2019, 4050796
Wilkins HM, Koppel SJ, Weidling IW et al (2016) Extracellular Mitochondria and Mitochondrial Components Act as Damage-Associated Molecular Pattern Molecules in the Mouse Brain. J Neuroimmune Pharmacol 11, 622-628
Guerreiro R, Wojtas A, Bras J et al (2013) TREM2 variants in Alzheimer's disease. N Engl J Med 368, 117-127
Korvatska O, Leverenz JB, Jayadev S et al (2015) R47H Variant of TREM2 Associated With Alzheimer Disease in a Large Late-Onset Family: Clinical, Genetic, and Neuropathological Study. JAMA Neurol 72, 920-927
Wang Y, Cella M, Mallinson K et al (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 160, 1061-1071
Turnbull IR, Gilfillan S, Cella M et al (2006) Cutting edge: TREM-2 attenuates macrophage activation. J Immunol 177, 3520-3524
Jiang T, Zhang YD, Chen Q et al (2016) TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology 105, 196-206
Podlesniy P, Figueiro-Silva J, Llado A et al (2013) Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Ann Neurol 74, 655-668
Thubron EB, Rosa HS, Hodges A et al (2019) Regional mitochondrial DNA and cell-type changes in post-mortem brains of non-diabetic Alzheimer’s disease are not present in diabetic Alzheimer’s disease. Sci Rep 9, 11386
Ruggiero FM, Cafagna F, Petruzzella V, Gadaleta MN and Quagliariello E (1992) Lipid composition in synaptic and nonsynaptic mitochondria from rat brains and effect of aging. J Neurochem 59, 487-491
Pointer CB and Klegeris A (2017) Cardiolipin in Central Nervous System Physiology and Pathology. Cell Mol Neurobiol 37, 1161-1172
Petrosillo G, Matera M, Casanova G, Ruggiero FM and Paradies G (2008) Mitochondrial dysfunction in rat brain with aging Involvement of complex I, reactive oxygen species and cardiolipin. Neurochem Int 53, 126-131
Perier C, Tieu K, Guegan C et al (2005) Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc Natl Acad Sci U S A 102, 19126-19131
Little JP, Simtchouk S, Schindler SM et al (2014) Mitochondrial transcription factor A (Tfam) is a proinflammatory extracellular signaling molecule recognized by brain microglia. Mol Cell Neurosci 60, 88-96
Schindler SM, Frank MG, Annis JL, Maier SF and Klegeris A (2018) Pattern recognition receptors mediate pro-inflammatory effects of extracellular mitochondrial transcription factor A (TFAM). Mol Cell Neurosci 89, 71-79
Julian MW, Shao G, Vangundy ZC, Papenfuss TL and Crouser ED (2013) Mitochondrial transcription factor A, an endogenous danger signal, promotes TNF release via RAGE- and TLR9-responsive plasmacytoid dendritic cells. PLoS One 8, e72354-e72354
Verdier Y, Zarandi M and Penke B (2004) Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer's disease. J Pept Sci 10, 229-248
Xie J, Mendez JD, Mendez-Valenzuela V and Aguilar-Hernandez MM (2013) Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 25, 2185-2197
Lue LF, Walker DG, Brachova L et al (2001) Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Exp Neurol 171, 29-45
Papaliagkas V, Anogeianakis G, Tsolaki M, Koliakos G and Kimiskidis V (2009) Prediction of Conversion from Mild Cognitive Impairment to Alzheimer’s Disease by CSF Cytochrome c Levels and N200 Latency. Curr Alzheimer Res 6, 279-284
Takuma K, Yan SS, Stern DM and Yamada K (2005) Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in Alzheimer's disease. J Pharmacol Sci 97, 312-316
Krysko DV, Agostinis P, Krysko O et al (2011) Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol 32, 157-164
Gouveia A, Bajwa E and Klegeris A (2017) Extracellular cytochrome c as an intercellular signaling molecule regulating microglial functions. Biochim Biophys Acta Gen Subj 1861, 2274-2281
Oyewole AO and Birch-Machin MA (2015) Mitochondriatargeted antioxidants. FASEB J 29, 4766-4771
Jauslin ML, Meier T, Smith RA and Murphy MP (2003) Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 17, 1972-1974
Gioscia-Ryan RA, LaRocca TJ, Sindler AL, Zigler MC, Murphy MP and Seals DR (2014) Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice. J Physiol 592, 2549-2561
Jin H, Kanthasamy A, Ghosh A, Anantharam V, Kalyanaraman B and Kanthasamy AG (2014) Mitochondriatargeted antioxidants for treatment of Parkinson's disease: preclinical and clinical outcomes. Biochimica et biophysica acta 1842, 1282-1294
Dashdorj A, Jyothi KR, Lim S et al (2013) Mitochondriatargeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasomemediated inflammatory cytokines. BMC Med 11, 178
Asano T, Koike M, Sakata S et al (2015) Possible involvement of iron-induced oxidative insults in neurodegeneration. Neurosci Lett 588, 29-35
Mena NP, Urrutia PJ, Lourido F, Carrasco CM and Nunez MT (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21, 92-105
Thomsen MS, Andersen MV, Christoffersen PR, Jensen MD, Lichota J and Moos T (2015) Neurodegeneration with inflammation is accompanied by accumulation of iron and ferritin in microglia and neurons. Neurobiol Dis 81, 108-118
Smigrodzki RM and Khan SM (2005) Mitochondrial microheteroplasmy and a theory of aging and age-related disease. Rejuvenation Res 8, 172-198
Casoli T, Spazzafumo L, Di Stefano G and Conti F (2015) Role of diffuse low-level heteroplasmy of mitochondrial DNA in Alzheimer's disease neurodegeneration. Front Aging Neurosci 7, 142-142
Onyango IG (2018) Modulation of mitochondrial bioenergetics as a therapeutic strategy in Alzheimer's disease. Neural Regen Res 13, 19-25
Jo A, Ham S, Lee GH et al (2015) Efficient Mitochondrial Genome Editing by CRISPR/Cas9. Biomed Res Int 2015, 305716
Hashimoto M, Bacman SR, Peralta S et al (2015) MitoTALEN: A General Approach to Reduce Mutant mtDNA Loads and Restore Oxidative Phosphorylation Function in Mitochondrial Diseases. Mol Ther 23, 1592-1599
Zhong Y, Hu YJ, Chen B et al (2011) Mitochondrial transcription factor A overexpression and base excision repair deficiency in the inner ear of rats with D-galactose-induced aging. FEBS J 278, 2500-2510
Hayashi Y, Yoshida M, Yamato M et al (2008) Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor a in mice. J Neurosci 28, 8624-8634
Xu S, Zhong M, Zhang L et al (2009) Overexpression of Tfam protects mitochondria against beta-amyloidinduced oxidative damage in SH-SY5Y cells. FEBS J 276, 3800-3809
Oka S, Leon J, Sakumi K et al (2016) Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer's disease. Sci Rep 6, 37889
Heneka MT, Kummer MP, Stutz A et al (2013) NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493, 674-678
Daniels MJ, Rivers-Auty J, Schilling T et al (2016) Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer's disease in rodent models. Nat Commun 7, 12504
Dempsey C, Rubio Araiz A, Bryson KJ et al (2017) Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-beta and cognitive function in APP/PS1 mice. Brain Behav Immun 61, 306-316
Yin J, Zhao F, Chojnacki JE et al (2018) NLRP3 Inflammasome Inhibitor Ameliorates Amyloid Pathology in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 55, 1977-1987
Yang Y, Wang H, Kouadir M, Song H and Shi F (2019) Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 10, 128
Lautrup S, Lou G, Aman Y, Nilsen H, Tao J and Fang EF (2019) Microglial mitophagy mitigates neuroinflammation in Alzheimer's disease. Neurochem Int 129, 104469
Fang EF, Hou Y, Palikaras K et al (2019) Mitophagy inhibits amyloid- and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 22, 401-412
Lei Q, Tan J, Yi S, Wu N, Wang Y and Wu H (2018) Mitochonic acid 5 activates the MAPK-ERK-yap signaling pathways to protect mouse microglial BV-2 cells against TNFalpha-induced apoptosis via increased Bnip3-related mitophagy. Cell Mol Biol Lett 23, 14
Zhou R, Yazdi AS, Menu P and Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221-225
Jiang S, Nandy P, Wang W et al (2018) Mfn2 ablation causes an oxidative stress response and eventual neuronal death in the hippocampus and cortex. Mol Neurodegener 13, 5
Park J, Choi H, Min JS et al (2013) Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem 127, 221-232
Kim H, Lee JY, Park KJ, Kim W-H and Roh GS (2016) A mitochondrial division inhibitor, Mdivi-1, inhibits mitochondrial fragmentation and attenuates kainic acid-induced hippocampal cell death. BMC Neurosci 17, 33
Joshi AU, Minhas PS, Liddelow SA et al (2019) Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci 22, 1635-1648
Akhter F, Chen D, Yan SF and Yan SS (2017) Mitochondrial Perturbation in Alzheimer's Disease and Diabetes. Prog Mol Biol Transl Sci 146, 341-361
Barber GN (2014) STING-dependent cytosolic DNA sensing pathways. Trends Immunol 35, 88-93
Liang Q, Seo GJ, Choi YJ et al (2014) Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe 15, 228-238
Sliter DA, Martinez J, Hao L et al (2018) Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258-262