in Title
  in Authors
  in Institutions
  in Abstract
  in Keywords

  - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  - Instructions to Authors
   "sample paper download"

  - Preparation of Tables
    and Illustrations


  - Chemical and
    Mathematical Usage,
    Addreviations, and
    Symbols


  - Editorial Board

  - Manuscript submission
   form


 



Article Info.
2008.04.30; 41(4) pp. 278~286
Title

Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis

Authors

Masabumi Shibuya*  

Institutions

Department of Molecular Oncology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan  

Abstract

Angiogenesis, the formation of blood vessels, is essential for preparing a closed circulatory system in the body, and for supplying oxygen and nutrition to tissues. Major diseases such as cancer, rheumatoid arthritis, and atherosclerosis include pathological angiogenesis in their malignant processes, suggesting anti-angiogenic therapy to be a new strategy for suppression of diseases. However, until the 1970s, the molecular basis of angiogenesis was largely unknown. In recent decades, extensive studies have revealed a variety of angiogenic factors and their receptors, including vascular endothelial growth factor (VEGF)-VEGFRs, Angiopoietin-Tie, Ephrin-EphRs and Delta-Notch to be the major regulators of angiogenesis in vertebrates. VEGF and its receptors play a central role in physiological as well as pathological angiogenesis, and functional inhibitors of VEGF and VEGFRs such as anti-VEGF neutralizing antibody and small molecules that block the tyrosine kinase activity of VEGFRs have recently been approved for use to treat patients with colorectal, lung, renal and liver cancers. These drugs have opened a novel field of cancer therapy, i.e. anti-angiogenesis therapy. However, as yet they cannot completely cure patients, and cancer cells could become resistant to these drugs. Thus, it is important to understand further the molecular mechanisms underlying not only VEGF-VEGFR signaling but also the VEGF-independent regulation of angiogenesis, and to learn how to improve anti-angiogenesis therapy. [BMB reports 2008; 41(4): 278-286]  

Keywords

Anti-angiogenic therapy, Dll4, Tumor angiogenesis, VEGF, VEGF-receptor